• PN: B111365

COMPONENTS

45x Ab-conjugated beads (S4P11- human CNTF Ab-bead). PN: B111365A. One vial containing 100 µL of anti-human CNTF conjugated to AimPlex Bead S4P11.

25x Biotin-detection Ab(human CNTF Biotin-dAb). PN: B111365B. One vial containing 100 µL of biotinylated anti-human CNTF.

Lyophilized Standard Mix-Human Group 10, Panel A, 9-Plex. PN: HG1009A. One vial containing lyophilized recombinant BTC, CNTF, FGF-4, Follistatin, IL-19, KGF, PDGF-AA, PDGF-BB, and PIGF-1.  Note: If multiple analyte kits on the above target list are ordered as a panel, only one vial of standard mix is supplied for those analyte kits.

STORAGE:  2-8 C in the dark.

IMPORTANT: Sodium azide forms explosive compounds with heavy metals. These products contain <0.05% (w/w) azide which with repeated contact with lead and copper commonly found in plumbing drains may result in the buildup of shock sensitive compounds. Dispose in accordance with regulations from your institute.

APPLICATION: Optimal antibody pair and antigen standard for assaying human Human CNTF. Can be multiplexed with other analytes in Human Group 10.  To be used in conjunction with the AimPlex NR Basic Kit (PN: P100001) and a diluent kit. Refer to the AimPlex Multiplex Immunoassay User Manual and kit inserts for the assay procedure.

For Research Use Only.  Not for use in diagnostic procedures.

Assay Specifications:

Sample types: Cell culture supernatant, serum, plasma, bodily fluid and tissue/cell lysate

Sensitivity (LOD): < 10 pg/mL

Quantitation range:

LLOQ: < 10 pg/mL

ULOQ: > 5,000 pg/mL

Standard dose recovery: 70-130%

Intra-assay CV: < 10%

Inter-assay CV: < 20%

Cross-reactivity of analytes in Human Group 10: Negligible

Sample volume: 15 µL/test

Description:

Ciliary neurotrophic factor (CNTF) is a polypeptide hormone and nerve growth factor whose actions have mainly been studied in the nervous system where it promotes neurotransmitter synthesis and neurite outgrowth in certain neural populations including astrocytes. The protein is a potent survival factor for neurons and oligodendrocytes and may be relevant in reducing tissue destruction during inflammatory attacks. A mutation in this gene, which results in aberrant splicing, leads to ciliary neurotrophic factor deficiency, but this phenotype is not causally related to neurologic disease. In addition to the predominant monocistronic transcript originating from this locus, the gene is also co-transcribed with the upstream ZFP91 gene. Co-transcription from the two loci results in a transcript that contains a complete coding region for the zinc finger protein but lacks a complete coding region for ciliary neurotrophic factor. CNTF has also been shown to be expressed by cells on the bone surface, and to reduce the activity of bone forming cells, osteoblasts.

References:

1.       Lam A, Fuller F, Miller J, Kloss J, Manthorpe M, Varon S, Cordell B (Sep 1991). "Sequence and structural organization of the human gene encoding ciliary neurotrophic factor". Gene 102 (2): 271–6. doi:10.1016/0378-1119(91)90089-T. PMID 1840538.

2.       Bazan JF (Sep 1991). "Neuropoietic cytokines in the hematopoietic fold". Neuron 7 (2): 197–208. doi:10.1016/0896-6273(91)90258-2. PMID 1714745.

3.       McGregor NE, Poulton IJ, Walker EC, Pompolo S, Quinn JM, Martin TJ, Sims NA (Mar 2010). "Ciliary neurotrophic factor inhibits bone formation and plays a sex-specific role in bone growth and remodeling". Calcified Tissue International 86 (3): 261–70. doi:10.1007/s00223-010-9337-4. PMID 20157807.

4.       Lambert PD, Anderson KD, Sleeman MW, Wong V, Tan J, Hijarunguru A, Corcoran TL, Murray JD, Thabet KE, Yancopoulos GD, Wiegand SJ (2001). "Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity". Proc. Natl. Acad. Sci. U.S.A. 98 (8): 4652–7. doi:10.1073/pnas.061034298. PMC 31889. PMID 11259650.